
2008 BLUE MOP, FUNCTIONAL EQUATIONS-II
ALİ GÜREL

(1) Find all functions f : Q→ Q such that f(1) = 2 and

f(xy) = f(x)f(y)− f(x + y) + 1.

(2) Find all functions f : Q+ → Q+ satisfying

f(x + 1) = f(x) + 1, and f(x3) = f(x)3 for all x ∈ Q+.

(3) Find all injective functions f : N→ N satisfying, f(1) = 2, f(2) = 4, and

f(f(m) + f(n)) = f(f(m)) + f(n).

(4) (BMO-03) Find all possible values for f
(

2004
2003

)
if f : R → [0, +∞) is the

function satisfying the conditions:

(i) f(xy) = f(x)f(y), ∀x, y ∈ Q
(ii) f(x) ≤ 1⇒ f(x + 1) ≤ 1, ∀x ∈ Q

(iii) f

(
2003
2002

)
= 2.

(5) Find all continuous functions f : R→ R such that

f(xy) = xf(y) + yf(x).

(6) The function f : R→ R satisfies x + f(x) = f(f(x)) for all real x. Find all
solutions to the equation f(f(x)) = 0.

(7) (SL-79) Given a function f : R→ R, if for every two real x, y the equality

f(xy + x + y) = f(xy) + f(x) + f(y)

holds, prove that f(x + y) = f(x) + f(y) for every real numbers x and y.

(8) (IMO-90) Construct a function f : Q+ → Q+ such that

f(xf(y)) =
f(x)

y
, ∀x, y ∈ Q+.
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Problem 1, Solution by Gye Hyun Baek: Plugging in x = 0 gives
f(0) = 1. Plugging in y = 1 gives f(x + 1) − f(x) = 1. We con-
clude that f(n) = n + 1 for all integers n. Now, letting y = n gives
f(nx) = nf(x) − (n − 1). Given x, choose n which makes nx an integer.
Then f(nx) = nx + 1 and we are left with f(x) = x + 1 for all rational
numbers x �

Problem 2, Solution by Nicholas Triantafillou: By induction f(x +
n) = f(x) + n. Given x ∈ Q+, let n ∈ Z+ such that both nx2 and n2x are
integers. Then,

f((x + n)3) = f(x3 + 3x2n + 3xn2 + n3) = f(x)3 + 3x2n + 3xn2 + n3

= (f(x) + n)3 = f(x)3 + 3f(x)2n + 3f(x)n2 + n3

implies f(x) = x or f(x) = −x − n but f(x) > 0 so we conclude that
f(x) = x for all x ∈ Q+ �

Problem 3, Solution by Sam Keller: Letting m = 1 gives f(f(n)+2) =
f(n) + 4. Since f(2) = 4, we deduce that f(2k) = 2k + 2 for all positive
integers k. Now, let f(3) = c. Because f is injective, c is odd. For all odd
k > c, we get f(k) = k + 2. So f(5) is either an odd number less than
c or it is c + 2. If f(5) = l < c, then f(m) = m + 2 for all odd positive
integers m ≥ l. But c− 2 ≥ l is an odd integer so f(c− 2) = c = f(3) and
by injectivity we get c = 5. However then 5 is in the image of f and so
f(5) = 7 which is not less than c = 5, a contradiction. In the other case,
f(5) = c + 2, but c is in the image of f so f(c) = c + 2 so by injectivity
we get c = 5. It then follows that f(1) = 2 and f(x) = x + 2 for all other
positive integers x �

Problem 4, Solution by Zhifan Zhang: Note that f(1) = 1 and f( 1
x ) =

1
f(x) . Also f(x) = f(−x). For a non-zero rational number x, f(x) 6= 0
since otherwise the first condition would force all the images of rationals
to be 0, contradicting the third condition. Now, given positive integers
x, y using the first two conditions it is not difficult to show that f(x± y) ≤
max{f(x), f(y)}. We can generalize this to f(mx+ny) ≤ max{f(x), f(y)}
for all integers m and n. Hence, f(gcd(x, y)) ≤ max{f(x), f(y)}. For dis-
tinct primes p and q this gives 1 ≤ max{f(p), f(q)}. However, f(1) = 1
so by the second condition, f(x) ≤ 1 for all positive integers. Thus
max{f(p), f(q)} = 1 for all distinct primes p and q. So all but one of
the primes are sent to 1. Factoring 2003 and 2002 and using the third
condition we see that this prime is one of 2,7,11, or 13. If it is 2, then we
get f

(
2004
2003

)
= 1

4 . In all the other cases f
(

2004
2003

)
= 1 �

Problem 5, Solution by Wenyu Cao: Letting x = y = 0, we get
f(0) = 0. For x 6= 0, let g(x) = e

f(x)
x . Then our equation becomes

g(xy) = g(x)g(y). Since f is continuous, so is g and by Cauchy’s Equation,
g(x) = xc for some real c, which implies that f(x) = cx ln |x| with the
convention that 0 ln 0 = 0 �
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Problem 6, Solution by Matthew Superdock: Suppose f(f(a)) = 0
for some real number a. Since x + f(x) = f(f(x)) for all real x, we have
a + f(a) = 0⇒ f(a) = −a and then f(f(a)) = 0⇒ f(−a) = 0. Hence, we
also have −a+f(−a) = f(f(−a))⇒ f(0) = −a. But 0+f(0) = f(f(0))⇒
−a = f(−a) = 0. Therefore a = 0, and note that f(f(0)) = f(0) and f is
injective so f(0) = 0 and f(f(0)) = 0, indeed �

Problem 7, Solution by Minseon Shin: Plugging-in (x, y)→ (x,−x) in
f(xy +x+y) = f(xy)+f(x)+f(y) gives f(−x) = −f(x). So, in particular
f(0) = 0. Plugging-in (−x,−y) gives f(xy − x− y) = f(xy)− f(x)− f(y)
and so f(xy + x + y) + f(xy − x − y) = 2f(xy). When x = y

y−1 , this

becomes f
(

2y2

y−1

)
= 2f

(
y2

y−1

)
. On the other hand, when x = −y

y+1 we get

f
(

2y2

y+1

)
= 2f

(
y2

y+1

)
. Since any real number can be written in one of the

forms y2

y±1 , we conclude that for all real x, we have f(2x) = 2f(x).
Plugging-in (x, y) → (x, 1) in the original equation, we get f(2x + 1) =
2f(x) + f(1). Plugging-in (x, y) → (xy + x + y, y), we get f(2xy + 2x +
2y + 1) = 2f(xy) + 2f(x) + 2f(y) + f(1). We proceed by rearranging the
terms and using the functional equation one more time:

f(x(2y + 1) + x + (2y + 1)) = 2f(xy) + 2f(x) + 2f(y) + f(1)⇒
f(2xy + x) + f(x) + f(2y + 1) = 2f(xy) + 2f(x) + 2f(y) + f(1)⇒

f(2xy + x) + f(x) + 2f(y) + f(1) = f(2xy) + 2f(x) + 2f(y) + f(1)⇒
f(2xy + x) = f(2xy) + f(x)

Finally plugging-in y → y
2x above, we get the desired result: f(x + y) =

f(x) + f(y) �

Problem 8, Solution by Joshua Pfeffer: First observe that f is both
injective and surjective. Now, (x, y) = (1, 1) gives f(1) = 1. Then, y = 1
gives f(f(x)) = 1

x . Plugging-in f(y) for y we get f
(

x
y

)
= f(x)

f(y) . Equiva-
lently, f(xy) = f(x)f(y). Note that these two conditions f(xy) = f(x)f(y)
and f(f(x)) = 1

x together imply the original functional equation. Hence,
it is enough to construct a multiplicative function satisfying f(f(x)) = 1

x .
Let pj be the j-th prime and for any positive integer k let f(p2k−1) = p2k

and f(p2k) = 1
p2k−1

. Extend f to a multiplicative function defined on Q+

using prime factorization and observe that it satisfies both conditions �


